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LIQUID CRYSTALS, 1994, VOL. 17, No. 6, 759-773 

Magnetic-field induced biaxiality in nematic liquid crystals 

Consequences for nuclear spin relaxation 

by BERTIL HALLE 
Condensed Matter Magnetic Resonance Group, Physical Chemistry 2, 

Lund University, P.O. Box 124, S-22100 Lund, Sweden 

(Received 11 January 1994; accepted 2 March 1994) 

When a uniaxial nematic liquid crystal is subjected to a magnetic field making 
a non-zero angle with the C, axis, the uniaxial symmetry is broken. The principal 
effect is a field-induced biaxiality in the long-wavelength region of the director 
fluctuation spectrum. Whereas the induced biaxiality has little effect on the mean 
square director fluctuation amplitudes (n:) and (n:), which are dominated by 
short-wavelength modes, it can profoundly affect the nuclear spin relaxation 
behaviour, which is sensitive to long-wavelength modes. Motivated by the 
increasing number of nuclear spin relaxation studies of director fluctuations in 
thermotropic, amphiphilic, and polymeric nematic liquid crystals, we present here 
a theoretical analysis of the effects of field-induced biaxiality on nuclear spin 
relaxation. 

1. Introduction 
In the presence of an external electric or magnetic field, the symmetry of a liquid 

crystal is broken, unless the field direction coincides with a crystal axis. When placed 
in a magnetic field, a macroscopic sample of a uniaxial nematic liquid crystal adopts 
an equilibrium configuration with its symmetry axis either parallel or perpendicular 
to the field, depending on the sign (positive or negative) of the magnetic suscepti- 
bility anisotropy, Ax [I]. In the latter case (Ax<O), which applies to the majority of 
discotic amphiphilic nematics [2 ,  31, the field induces a biaxiality, i.e. the point group 
symmetry of the nematic liquid crystal is lowered from D,, to D2,. While the effect 
on the microscopic orientational order parameter is negligible, the induced biaxiality 
in the director fluctuation spectrum [4-61 has observable consequences. Indeed, 
recent experiments have demonstrated optical biaxiality in nominally uniaxial 
thermotropic nematics with Ax<O in the presence of magnetic [7] or electric [8] 
fields. Furthermore, an external field with oblique orientation, as can be achieved by 
boundary effects [l] or sample spinning [9, lo], induces biaxiality in nematic liquid 
crystals with Ax of either sign. 

In nuclear magnetic resonance studies of nematic liquid crystals, director 
fluctuations affect the spectral line-shape via the associated orientational order 
parameter and, more importantly, the spin relaxation rates via the director fluctua- 
tion spectral densities. While the order parameter is mainly influenced by short- 
wavelength director fluctuation modes, the adiabatic relaxation behaviour is domi- 
nated by long-wavelength modes. Since the long-wavelength modes are magnetically 
quenched, one expects field-induced biaxiality to have important consequences for 
the spin relaxation behaviour. Motivated by the increasing number of nuclear spin 
relaxation studies of director fluctuations in thermotropic [l l-141, amphiphilic 
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760 B. Halle 

[15, 161, and polymeric [17, 181 nematic liquid crystals, we present here a theoretical 
analysis of the effects of field-induced biaxiality on nuclear spin relaxation. 

2. Biaxial magnetic quenching of director fluctuations 
In a continuum description, the orientational state of a uniaxial nematic liquid 

crystal is specified by the director field n(r) [19]. Due to thermal fluctuations, the 
director n(r) at a given ‘point’ r does not in general coincide with the unit vector no 
defining the symmetry axis of the uniaxial liquid crystal (or a uniformly aligned part 
thereof). Our task in this section is to describe how these director fluctuations are 
affected by a uniform magnetic field B. 

The configuration shown in figure 1, with the magnetic field B at an angle fi  to 
the symmetry axis no, does not in general correspond to stable equilibrium. The 
interaction of the magnetic field with the diamagnetic susceptibility anisotropy Ax of 
the liquid crystal tends to orient the symmetry axis no parallel (perpendicular) to the 
field if Ax is positive (negative). In the absence of external fields, the direction of no is 
usually dictated by anisotropic surface interactions (strong anchoring boundary 
conditions). The magnetic torque is then opposed by an elastic torque which tends to 
minimize the curvature in the director field. The outcome of this competition 
depends on the sample dimension(s) and on the magnetic coherence length [I] 

with K the curvature elastic constant of the liquid crystal [20]. 
The onset of magnetic realignment, referred to as the Frkedericksz transition [ 11, 

can be shown to occur when the sample thickness d and the magnetic coherence 
length < are related by 

T 

Figure I .  The liquid crystal symmetry axis no, the director n, and the magnetic field B. 
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Mugnetic-feld induced biaxiulity in NLCs 761 

K(cos’ p), if Ax>O, 
K(sin’ p), if Ax<O, 

d = 2 t x  

where K(m) is the complete elliptic integral of the first kind with parameter m. For 
the configurations conventionally used to study the FrCedericksz transition ( p  = 71/2 
if Ax > 0 and p = 0 if Ax < 0), equation (2) reduces to the well-known result d= [l]. 
If d is smaller than the critical value given by equation (2), the magnetic field has no 
effect and the sample remains homeotropic with no at an angle j? to B. If d is much 
larger than the critical value, the bulk of the sample undergoes a complete magnetic 
realignment (to p = 0 if Ax > 0 or to p = 71/2 if Ax < 0), while the director field is non- 
uniform in a surface layer with a thickness of order 5 .  

For a nematic liquid crystal of volume V the transverse (a=x or y )  director 
components, n,(r), may be Fourier expanded as 

with complex-valued mode amplitudes 

i r  

We choose the orientation of the x and y axes so that the magnetic field is in the xz  
plane (cf. figure 1). 

The thermal fluctuations of the director components n,(r) are governed by the 
free energy of deformation, F = F ,  + F,. In the harmonic approximation, where the 
deviation of the director n from the symmetry axis no is small throughout the volume 
V ,  the curvature-elastic free energy F ,  can be Fourier decomposed as [l] 

The magnetic free energy is (apart from a constant term, independent of n(r)) 

For a locally uniaxial liquid crystal, the irreducible (and traceless) susceptibility 
tensor can be written on the dyadic form 

X = Xiinn + XI(1-nn)7 (6)  

where I is the unit tensor and x ~ ~ = x ~ ~  and x I = x x x = x y y  are the susceptibility 
components along the director and perpendicular to it. Inserting equation (6 )  into 
equation (9, we obtain (after dropping a constant term) 

F ,  = --- dr[B. n(r)]’, 2 s, (7) 

where Ax = xll -xL is the susceptibility anisotropy [21], already introduced in 
equation (1). Evaluating the scalar product in equation (7) in the coordinate system 
of figure 1 and noting that B,=Bsinp, By=O, and B,=Bcosp, we obtain (again 
dropping a constant term) 
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762  B. Halle 

dr[cos (2P)n3r)  + cos2 fin,’(r) - sin (2fl)nx(r)nz(r)]. (8) 

Within the harmonic approximation we can set nz= 1 in the last term, which then 
vanishes since fdmx(r) = 0 for a homeotropic sample. Using equation (3 a) we can 
then Fourier decompose the magnetic free energy as 

2M v 

(9) 
B2A\X 

2Po q 
Fm=- VC{COS (28) I f i x ( q )  I + cosz B I fi,(q) I 2}.  

Combining equations (4) and (9) and using the definition (l), we obtain for the 
total free energy of deformation 

with a = sgn (Ax) and 

It follows from equation (10) that the x and y modes are statistically independent, i.e. 

<fix(dfiy(q’)> = < f i x ( q ) >  <fi,(q’)> = 0 3 

<fia(q)fi,(q’)> = dq, -q,< IUa)I  2 > .  

(12) 

as are modes of different wavevectors 

(13) 

Unless B= 0, however, the x and y modes are not statistically equivalent. Indeed, the 
classical equipartition theorem yields with equation (10) 

showing that while short-wavelength modes (45 9 1) are effectively uniaxial, long- 
wavelength modes (q5 I 1) are biaxial if f l #  0. 

The fluctuation (or variance) of the transverse director components n,(r) is 
obtained from equations (3 a) and (1 3) as 

<n,2(r)> =I< I f ia (q)  I 2>  == dq q2( IfiJq) I 2>  9 (15) 
P s,“ 

where we have approximated the wavevector sum by an integral with (spherical) cut- 
offs q- and q+. The physical significance of these cut-offs is as follows: 2n/q- = d ,  
the linear dimension of the liquid crystal sample (or the homeotropically aligned 
part thereof), and 2n/q+ =a, the microscopic length (of the order of a molecular or 
micellar length) below which the continuum description ceases to be valid. 

The effect of a magnetic field on the director fluctuations is obtained from 
equations (14) and (15) as 
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Magnetic-field induced biaxiality in NLCs 763 

where the subscript zero denotes field-free conditions (t+ a), and we have extended 
the upper integration limit from q+t  to infinity (since invariably q + t %  1). The 
integral in equation (16) is standard; depending on the sign of uf,(/?) it yields arctan 
or In functions. 

The magnetic quenching functions A,(/?;u) are shown in figures 2 and 3.  All 
curves refer to stable equilibrium configurations, i.e. q - < > 1. For q - < = 1, equation 
(16) predicts a divergence of (n;) at fl=n/2, if Ax>O and of both (n:) and (n; )  at 
/? = 0, if Ax c 0. This divergence is of course unphysical (n is a unit vector); it results 
from the breakdown of the harmonic approximation. Such behaviour is not 
unexpected: the divergence of the director fluctuations is closely related to the 
macroscopic Freedericksz transition [22]. 

The qualitative behaviour of the curves in figures 2 and 3 may be understood by 
examining how the magnetic torque T,=dF Jdaocsin (2a) varies when the director n 
moves away from no, thus changing the angle u between n and B from to a slightly 

2 )  I I I I I I I 1 1  

0 30 60 90 
p f deg. 

Figure 2. Magnetic quenching of director fluctuations, Ax (solid) and Ay (dashed) in units of 
kBT/(2n2K5), versus the angle j between the magnetic field and the symmetry axis no 
of a nematic liquid crystal with Ax>O. The 3 sets of curves refer to (a) q - t =  1.1, 
(b) q - 4 = 2 ,  and (c) q - 5 = 5 .  
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As in figure 2, but for a liquid crystal with Ax < 0. 
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764 B. Halle 

smaller or larger value (cf. figure 1). Consider first the case Ax>O (see figure 2), 
where the magnetic torque T, tends to align n with B (decrease a). For f l<  n/4, T, 
increases with a and, hence, reduces n, fluctuations away from B more than it 
enhances n, fluctuations towards B. Consequently (n:)  < (n:),, i.e. director fluctua- 
tions in the xz plane are magnetically quenched. For p> z/4, however, T, decreases 
with a and, by the same reasoning, (n:)  > (n:),, i.e. the magnetic field enhances 
director fluctuations in the xz plane. Since director fluctuations in the yz  plane 
cannot decrease the angle a between n and B, we have magnetic quenching, i.e. 
(n; )  < (n;),, for all p<n/2. The total director fluctuation amplitude (n:) + ( n z )  is 
magnetically enhanced for ,O > fl, = arccos ( I  /J3), if q - 5  9 1. Analogous consider- 
ations apply to the case Ax<O (figure 3). In particular, we see from equation (16) 
that A,(P; - 1)  = A,(z/2 - f l ;  + 1). 

So far we have only considered fluctuations around stable equilibrium configur- 
ations. At the magnetic fields of conventional NMR spectrometers, this means that 
configurations with p # 0 (for Ax > 0) or f l  # n/2 (for Ax < 0) can be realized only in 
very thin (typically d l  1 Opm) liquid crystal samples; otherwise a Frtedericksz 
transition intervenes. Due to the viscous torque exerted by the liquid crystal, 
however, the Freedericksz transition is not instantaneous. Sample spinning tech- 
niques can therefore be used to achieve steady-state configurations with oblique 
orientations p even for large samples. 

A director fluctuation mode A,(q) of wavevector q has a characteristic relaxation 
time [23] 

with q an effective viscosity coefficient, while the time constant for the Freedericksz 
transition is [9, 241 

with y1 the rotational viscosity. As expected, zF is of the same order as the relaxation 
time of modes of wavevector 1 /[. By spinning the liquid crystal sample at an angular 
frequency 09  l / ~ ~ ,  so that the director does not have time to respond to changes in 
the angle a (cf. figure I), one can generate steady-state configurations with oblique 
orientations f l  [9, 10, 251. Thus, for example, if a liquid crystal with Ax>O is rapidly 
spun around the z axis of figure 1, no remains at an angle f l  to the magnetic field (i.e. 
there is no FrCedericksz transition) irrespective of the sample size, provided that 
B < p, = arccos ( 1  / J 3 )  [lo]. For a liquid crystal with Ax < 0, the same result can be 
accomplished if ,l3 > fl,. For other values of the angle between the spinning axis and 
the B field one obtains a two-dimensional isotropic no distribution in the plane 
normal to the spinning axis [lo, 251. 

Since only long-wavelength (q4 < 1) director fluctuation modes are significantly 
affected by the magnetic field (cf. equation (14)) and since these modes are effectively 
static on a time scale l/w < T ~  (cf. equation ( 1  7)), it follows that director fluctuations 
in a spinning sample are governed by an effective magnetic free energy ( F , ) $  which 
is averaged over one cycle of the spinning motion [lo], i.e. equation (7) is replaced by 
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Magnetic-field induced biuxiulity in NLCs 765 

For the case of a homeotropic alignment of no along the spinning axis, equation 
(19) involves an average over the azimuthal angle 4 in figure 1 ,  and 

A comparison with equation (8) shows that the previous results (equations (lo), (14), 
and (16)) are valid also for the present case iff, (B) is replaced by P2(cosB). In 
particular, 

This result applies to the case Ax > 0, if P I P, and to the case Ax < 0, if B 2 b,. As 
expected, sample spinning around no eliminates the induced biaxiality (A, = Ay). 
Figure 4 shows how the magnetic quenching varies with P. The vanishing of the 
effective magnetic interaction at  the magic angle 8, is completely analogous to the 
well-known technique for elimination of static second-rank spin couplings in solid- 
state NMR [26]. 

Another experimentally relevant case is that of a liquid crystal with Ax > 0 which 
is spun rapidly around an axis orthogonal to the magnetic field (the y axis in figure 
1). As noted above, this results in a uniform distribution of B values [lo, 251. The 
previous results (equations (lo), (14), and ( 1  6)) are then modified according to 

As expected, the nx fluctuations are unaffected by the magnetic field rotating rapidly 
in the xz plane. The magnetic quenching of the ny fluctuations is obtained from 
equation (16) as 

0 

-0.5 
h e 
6 
g -1.0 
a“ 

I I  
h 

-1.5 

0 30 Pm 60 90 
p I deg. 

Magnetic quenching of director fluctuations, Ax= A, in units of kBT/(2n2K5),  
versus the angle 1 between the magnetic field and the spinning axis (which is parallel to 
no). The different curves refer to (a) q- [=O,  (b) q-<=O.l, (c) q - [ = l ,  and 

Figure 4. 

(d )  q- (=  10. 
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766 B. Halle 

For a large sample (4 -5  4 l), the magnetic quenching is thus reduced by a factor J2 
as compared to the p=O configuration (cf. equation (21)). 

3. Orientational order parameters 
Most NMR nuclei of interest are coupled to the molecular degrees of freedom 

via second-rank interaction tensors [27]. The orientational order is then manifested 
in the static NMR line-shape via the second-rank orientational order parameters 
(Die(+, 6)). When a magnetic field is applied at an angle p # 0 to a uniaxial nematic 
liquid crystal, the rotational symmetry is lowered from D,, to D,, and the non-zero 
second-rank order parameters are [28, 291 

3 
2 S=(P,(cos O))= 1 -- [(n,Z)+(n,Z>], 

and 

J 6  P = R e  6))=--- 4 [(nE)-(n,”)]. 

In terms of the magnetic quenching functions Aa defined in equation (16), 

3 
S’S0-j (Ax+Ay), 

P=- J 6  (Ax-Ay), 
4 

with So the uniaxial order parameter in the absence of magnetic field. In static 
samples, the biaxial order parameter P has the same sign as Ax (cf. figures 2 and 3). 
In homeotropically aligned spinning samples, of course, P = 0, whereas for a Ax > 0 
sample with the spinning axis orthogonal to the field, P > 0. 

As previously shown [6], S - S o  and P vary as BZ for sufficiently weak magnetic 
fields: combination of equations (26), (27), and (16) yields for B+O 

3ok,T 
4 7 ~ ~ K q - l ~  s- so= [COSZ p+cos (28)], 

and 

J6ak,T 
8 7 ~ ~ K q - ( ~  

P= [COS, - cos (2P)].  

As seen from figures 2-4, Ax and A,, are at most of order k,T/(2n2K<), which is 
typically of order 10- ’. Magnetic quenching of director fluctuations therefore has 
no significant effect on the static NMR line-shape. 

4. Spin relaxation by director fluctuations 
Although the relative magnetic quenching Aa/(n,2)o of the real-space director 

fluctuation amplitudes is at most of order ( q + < ) - l 4  1, the adiabatic (zero- 
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Magnetic-field induced biaxiality in NLCs 161 

frequency) spin relaxation behaviour, which mainly reflects long-wavelength director 
fluctuation modes, can be profoundly affected by magnetic quenching. 

Within the regime of the Bloch-Wangsness-Redfield perturbation theory of spin 
relaxation [27], the observable relaxation behaviour of most spin I2 1 nuclei is 
determined by 3 lab-frame spectral density (LFSD) functions Jkk(kw0), evaluated at 
the multiples k=O, I ,  2 of the Larmor frequency coo. We focus on the adiabatic 
spectral density Jk,(O), since only this LFSD is significantly affected by field-induced 
biaxiality . 

The LFSD Jko(0)  can generally be expressed as an orientation-dependent linear 
combination of 15 crystal-frame spectral densities (CFSDs) Jy(O), which contain all 
the available information about the amplitudes and rates of the fluctuations that 
induce spin relaxation, 

where fi and cp are the polar and azimuthal angles that specify the orientation of the 
magnetic field with respect to the crystal axes. If the liquid crystal possesses 
rotational symmetry elements, the number of distinct non-zero CFSDs is reduced. 
The remaining so-called irrreducible (or symmetry-adapted) CFSDs and the asso- 
ciated angular functions have recently been given in explicit form for all crystallo- 
graphic point groups [29]. For a uniaxial liquid crystal of point group D,, there are 
only 3 irreducible CFSDs and equation (30) takes the well-known form 

(31) 
3 

JkO(O; p)= 1 -- s2 Jgo(O)+3s2(1 -s2)J~l(o)+;i s ~ J : ~ ( O ) ,  (7 
where s = sin p and 

J;&O) = j-~dTl(D:o[4(o), ~ ( O l l D 3 # ( 9 ,  e(t)l> - <D:O(dhe)> <D;,.c#, @)>I. (32) 

For an intrinsically biaxial liquid crystal of point group DZh, there are 6 
irreducible CFSDs [29]. However, for an intrinsically uniaxial nematic phase where 
the biaxiality is induced by the same external magnetic field that polarizes the 
nuclear spins, the field direction is always in the plane of two of the crystal axes. 
Without loss of generality, we can therefore set cp =O so that B is in the xz plane (as 
in figure 1). The adiabatic LFSD Jko(0)  then depends on only 5 of the 6 irreducible 
CFSDs according to (cf. table B 2  of [29]) 

3 3 
J k o ( O ;  p)=( 1 -? S 2 ) i J g , ( 0 ) + 4 6 S 2  ( I  -* s 2 )  Re J;,(O) 

9 3 
2 2 +- s2(1 -s2)[Jy,(0)-Re Jy-l(0)]--s2(l - S ~ ) [ J ~ ~ ( O ) + R ~  JF-l(0)] 

(33) 
3 
4 

+ - S ~ [ J : ~ ( O )  + ReJ:-2(0)1. 

Expressing the Wigner functions in equation (32) in terms of director com- 
ponents according to 
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768 B. Halle 

and 

we can transform equation ( 3 3 )  into 

and the time correlation functions (TCFs) 

To obtain these results we have assumed that the x and y modes are statistically 
independent at all times (cf. equation (1 2)) .  Furthermore, we have neglected 
contributions to J:l and J:-l of fourth order in n,, since they are negligible 
compared to the second-order contributions. The fourth-order terms in equation 
( 3 5 )  correspond (exactly) to the CFSDs Jgo ,  J:o, &, and J : - 2  in equation (33 ) .  
These terms are retained in equation (35 )  since they are the only contributions for 
J = O  and b=n/2. As seen from equation (3.9, only 3 independent linear combina- 
tions of CFSDs can be determined from the angular dependence of the adiabatic 
LFSD. In fact, this is already apparent in equation (33) ,  which may be expressed as a 
quadratic polynomial in sin2 0. 

5. Second-order spectral densities 
Unless f i  is very close to 0 or n/2, Jbo(O; f i )  in equation ( 3 5 )  is dominated by the 

second-order spectral densities j,,. Neglecting the fourth-order spectral densities, we 
then have 

9 
2 

Jbo(o; b)=- S2(1 -S2)(3j2,-j2y). 

The second-order TCFs in equation (37)  may be expressed as [30]  

9 2 d T )  = c< I U q )  I > exp ( - q2D,2) .  
9 

(39 )  

Here D ,  = D + K/y, with D the translational diffusion coefficient of the spin-bearing 
species. Thus 
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Magnetic-field induced biuxiulity in NLCs 

where we used equations (14)-(16) in the last step. 
For thin (4- t  2 1) equilibrium samples, equation (41) yields 

and, in the absence of a magnetic field (<+a), 

769 

(41) 

Since the magnetic quenching depends on the orientation of the liquid crystal with 
respect to the magnetic field, the CFSDsj,, in (5.4) depend on 8. As a consequence, 
the orientation dependence of the LFSD Jb,(O; p) in equation (39) deviates from the 
sin2 8 cos2 p dependence characteristic of a uniaxial liquid crystal (cf. equation (31)). 
This is illustrated in figure 5. 

For a homeotropically aligned spinning (COB l/zF) sample, we obtain from 
equations (41) and (21) 

An expansion of the arctan function shows, as expected, that j 2 ,= j i ,  at the magic 
angle p=bm. For large samples (4-t < l), however, j2,<j2, for /?#/Im and the 
orientation dependence of the LFSD Jb,(O; a) differs qualitatively from the uniaxial 
case. This is shown in figure 6. Note that magnetic quenching always reduces 
Jbo(O; 8) for a liquid crystal aligned by fast sample spinning. 

For a liquid crystal with Ax > 0 which is spun rapidly around an axis orthogonal 
to the magnetic field, we obtain from equations (41) and (23) 

0.8 

c . 
0.2 

0 0 30 60 90 
I deg. 

Figure 5 .  Magnetic quenching effect on the orientation (B )  dependence of the lab-frame 
spectral density JkO(O$) for thin ( q - ( >  I )  liquid crystal samples. The dashed curve 
corresponds to the field-free case (q -<F 1 )  and the solid curves to a situation just 
before the Freedericksz instability ( 4 -  ( = 1) .  
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770 B. Halle 

0.81 I I I I 1 1 1  1 i 1 

" 0  30 P, 60 90 
p 1 deg. 

Figure 6. Magnetic quenching effect on the orientation (/I) dependence of the lab-frame 
spectral density J~, (O$)  for a liquid crystal homeotropically aligned by fast sample 
spinning. The dashed curve corresponds to the field-free case (q- t  %- 1) and the solid 
curves to the 4 - 5  values indicated. 

j , y  =j,OaJ(2)q- 5 5- arctan (J(2)q - 5) . (45) [" 1 
Since j2x=j!a, we can write the LFSD in equation (39) on the uniaxial form (cf. 
equation (31)) 

&(O; p) = 3s2( I - s2)JFl(0), 

with the CFSD 

In contrast to equation (44), this CFSD is independent of sample orientation (p). 
For a large sample ( 4 - t  < I ) ,  the contributionj,, from the magnetically quenched y 
mode is negligible compared to  the contributionjzx=j,Oa from the unquenched x mode 
(cf. equation (45)). Consequently, the CFSD in equation (47), Jyl(O) = (9/2)jia, 
is independent of the magnetic coherence length 5 and a factor 3/2 larger than the 
result in the absence of magnetic quenching, when 17 1(0> = 3j2a, since j ,x =j2, .  This 
factor 3/2 is a direct consequence of the magnetically induced biaxiality. 

Since the x modes that are responsible for Jyl (0) are not magnetically quenched, 
fluctuation modes of very long wavelengths (comparable to the dimension of a 
homeotropically aligned part of the sample-cf. equation (43)) may contribute to the 
spin relaxation. Director fluctuation modes of such long wavelengths, however, are 
so slow (cf. equation (17)) that they can only produce static line-shape effects, but 
cannot induce spin relaxation 1271. Since the spin relaxation is dominated by the 
slowest modes that are fast enough to motionally average the spin-lattice coupling, 
the usual perturbation theory of spin relaxation [27] is not valid. As a consequence, 
the orientation dependence of Jk,(O; p) is no longer of the uniaxial form in equation 
(46). Such an anomalous orientation dependence was observed recently in [17], 
where it was also suggested that the discrepancy is due to breakdown of the 
perturbation theory. Here we have shown explicitly that this breakdown is due to the 
induced biaxiality, with x modes that are not magnetically quenched. 
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It is also of interest to investigate the effect of field-induced biaxiality on the 
frequency-dependent second-order spectral densities 

which may be studied, for example, by field-cycling or echo-train techniques. 
Combination of equations (14), (40), and (48) yields for the case with A x t O  and 
P = xi29 

and 

The integrals are standard and we obtain for o 9 o - = q? D ,  (which is always the 
case for a macroscopic sample if o # 0), 

u - (0) - ( w m / W > u  + (0) 

and 

with 

(J(2w+/o)- l)+arctan (4(2o+/w)+ 1)karctanh 

(51) 

and with the characteristic frequencies w + = q$ D,  and om = t - ’D, .  
The result in equation (50 b) for the spectral density jz,(w), which is not mag- 

netically quenched in the configuration considered, agrees with the traditional result 
[3 1, 321. In practice, one always has w, < w, t q  + % 1, and 5q - < 1, in which case 

i.e. magnetic quenching plays no role at non-zero frequencies. 

6. Fourth-order spectral densities 
In the absence of boundary effects (thin samples) and non-equilibrium effects 

(spinning samples), a nematic liquid crystal placed in a magnetic field will be 
magnetically aligned with P = 0,  if Ax > 0 or P = 4 2 ,  if Ax < 0. According to equation 
( 3 9 ,  at these orientations the second-order spectral densities j,, do not contribute to 
the observable adiabatic LFSD Jko(O; b), which thus becomes dominated by the 
fourth-order spectral densities j,, [12, 13, 151. 
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In the case Ax>O, the uniaxial symmetry of the liquid crystal is not broken by 
the magnetic field and equation (35) reduces to 

0 0 

sincej,, =j4y. In the case Ax < 0, on the other hand, the uniaxial symmetry is broken 
and j4r #j4y. In the /3 = n/2 configuration, however, the y modes do not contribute to 
the adiabatic LFSD Jko(O; p) since they do not modulate the angle (a) between the 
director and the magnetic field (cf. figure 1). Indeed, with p=n/2 in equation ( 3 3 ,  
we have 

9 
4 J k o  (0; 71/2)=-j4x. (54) 

Since af,(p> = 1 for Ax > 0, p = 0 as well as for Ax < 0, p = n/2, j 4x  has the same form 
in the two cases [33]. For example, if translational diffusion of the spin-bearing 
species through the spatially inhomogeneous director field is much faster than the 
viscous damping of the fluctuation modes (D 9 K / q ) ,  we have [ 151 

where terms of order (y+[)- and smaller have been neglected. 

This work was supported by grants from the Swedish Natural Science Research 
Council (NFR). 

References 
[l] DE GENNES, P. G., 1974, The Physics of Liquid Crystals (Clarendon Press), Chap. 3. 
[2) FORREST, B. J., and REEVES, L. W., 1981, Chem. Rev., 81, 1.  
[3] SONIN, A. S., 1987, Souiet Phys. Usp., 30, 875. 
[4] GRAMSBERGEN, E. F., LONGA, L., and DE JEU, W. H., 1986, Phys. Rep., 135, 195. 
[5] DUNMUR, D. A., and PALFFY-MUHORAY, P., 1988, J. phys. Chem., 92, 1406. 
[6] DUNMUR, D. A., and SZUMILIN, K., 1989, Liq. Crystals, 6, 449. 
[7] SEPPEN, A., MARET, G., JANSEN, A. G. M., WYDER, P., JANSSEN, J. J. M., and DE JEU, 

W. H., 1986, Biophysical Efects of Steady Magnetic Fields, edited by G. Maret, 
J. Kiepenheuer and N. Boccara (Springer-Verlag), p. 18. 

[8] DUNMUR, D. A., SZUMILIN, K., and WATERWORTH, T. F., 1987, Molec. Crystals liq. 
Crystals, 149, 385. 

[9] LESLIE, F. M., LUCKHURST, G. R., and SMITH, H. J., 1972, Chem. Phys. Lett., 13, 368. 
[lo] CORTIEU, J., ALDERMAN, D. W., GRANT, D. M., and BAYLES, J. P., 1982, J.  chern. Phys., 

[ l l ]  NOACK, F., NOTTER, M., and WEISS, W., 1988, Liq. Crystals, 3, 907. 
[12] VOLD, R. L., VOLD, R. R., and WARNER, M., 1988, J. chem. Soc., Furuduy Trans. 2, 84, 

1131 VAN DER ZWAN, G., and PLOMP, L., 1989, Liq. Crystals, 4, 133. 

77, 723. 

997. 

[14] KOLLNER, R., SCHWEIKERT, K.  H., NOACK, F.,and ZIMMERMANN, H., 1993, Liq. Crystals, 
13. 483. 

[15] HALLE, B., QUIST, P.-O., and FuRO, I., 1992, Phys. Rev. A, 45, 3763. 
[I61 HALLE, B., QUIST, P.-O., and FuRO, I . ,  1993, Liq. Crystals, 14, 227. Equation (6.10b) 

lacks a factor 4 in the denominator. 
[17] HEATON, N., REIMER, D., and KOTHE, G., 1992, Chem. Phys. Lett., 195, 448. Since the 

induced biaxiality was not explicitly recognized in this work, equation (7) lacks a factor 
312. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Magnetic-field induced biaxiality in NLCs 773 

1181 ZEUNER, U., DIPPEL, T., NOACK, F., MULLER, K., MAYER, C., HEATON, N., and KOTHE, 
G., 1992, J.  chem. Phys., 97, 3794. 

[19] The director n is a unit vector along the major principal axis of the second-rank 
orientational order tensor, averaged over a microscopic volume at r. 

[20] Throughout this work we adopt the one-constant approximation, i.e. we assume that the 
curvature elastic constants associated with splay, twist, and bend deformations are 
equal. 

[2 I ]  Macroscopic susceptibility measurements average over director fluctuations and hence 
yield the quantity SAX, with S the uniaxial order parameter defined in $ 3 .  

[22] For the classical configurations ( l = n / 2  and Ax>O, or p = O  and Ax<O), equation (2) 
predicts a Frtedericksz transition at 4-5 =2, whereas the director fluctuations in 
equation (16) diverge at q-<=1. The difference is presumably due to the use of a 
spherical cut-off in our treatment of director fluctuations. 

[23] ORSAY LIQUID CRYSTAL GROUP, 1969, J.  chem. Phys., 51, 816. 
[24] PIERANSKI, P., BROCHARD, F., and GUYON, E., 1973, J. Phys., France, 34, 35. 
[25] CARR, S. G., LUCKHURST, G. R., PUOPKO, R.,  and SMITH, H. J., 1975, Chem. Phys., 7, 

[26] SLICHTER, C. P., 1980, Principles of Magnetic Resonance, third edition (Springer-Verlag), 

[27] ABRAGAM, A., 1961, The Principles of NucEear Magnetism (Clarendon Press), Chap. VIII. 
[28] ZANNONI, C., 1979, The Molecular Physics of Liquid Crystals, edited by G. R. Luckhurst 

I291 GUSTAFSSON, S., and HALLE, B., 1993, Molec. Phys., SO, 549. 
[30] FINCUS, P., 1969, Solid St.  Commun., 7, 415. 
[31] UKLEJA, P., PIRS, J., and DOANE, J. W., 1976, Phys. Rev. A, 14, 414. 
[32] FREED, J. H., 1977, J .  chem. Phys., 66, 4183. 
[33] In [lS], the biaxial relaxation behaviour for the N, phase (Ax<O) was not recognized, 

with the consequence that the curvature elastic constant K reported for the N, phase is 
a factor 1 /  J2 too small, while the reported 1 -S,,, is a factor J2 too large. 

278. 

Chap. 3 and 8.  

and G. W. Gray (Academic Press), Chap. 3. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


